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Abstract

Carbon nanotubes naturally tend to form crystals in

the form of hexagonally packed bundles or ropes that
should exhibit a transversely isotropic constitutive

behavior. Although the intratube axial stiffness is on the
order of I TPa due to a strong network of delocalized

bonds, the intertube cohesive strength is orders of

magnitude less controlled by weak, nonbonding van der
Waals interactions. An accurate determination of the

effective mechanical properties of nanotube bundles is

important to assess potential structural applications
such as reinforcement in future composite material

systems. A direct method for calculating effective
material constants is developed in the present study.

The Lennard-Jones potential is used to model the

nonbonding cohesive forces. A complete set of
transverse moduli are obtained and compared with

existing data.

Introduction

Future nanostructured composite materials are

expected to incorporate carbon nanotube reinforcement

either dispersed individually or as nanofilamentary

bundles or ropes yielding unprecedented mechanical

properties. A carbon nanotube is a cylindrical molecule
composed of single or multiple walls of graphene
sheets. These sheets are, in turn, composed of

hexagonal units or graphene rings of carbon atoms that
are bonded through highly stable sp 2 hybridized

orbitals. A typical carbon nanotube is schematically

depicted in Figure 1 while Figure 2 contains a cross-
section of a bundle ensemble of individual nanotubes 1.

Numerous studies have been made to analytically

and experimentally determine the elastic properties of
individual nanotubes. Axial Young's moduli on the

order of 1 TPa have been measured using atomic force

microscopy (AFM) 2 and thermal vibrations 3. Analytical
studies have utilized ab initio calculations 4, tight-

binding methods -s, molecular dynamic simulations
(MD) 6 and lattice dynamics 7'8. These elastic properties

are entirely based on the strong intratube valence forces
of the carbon-carbon bonds.

Nanotube ensembles, however, typically form

hexagonally packed crystal configurations in which the
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Figure 1. Single-walled nanotube.
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intertubeforceinteractionsaredueexclusivelyto non-
bondingvanderWaalseffectswhicharemuchweaker
thanthevalenceforcesandarehighlynonlinear.Less
considerationhas beengiven to the transverse
mechanicalpropertiesof nanotubebundleswhich
dependon a gooddescriptionof thesenon-bonding
interactions.Theseintertubecohesivepropertiesareof
specialinterestfor useinpredictingthepropertiesof
carbonnanotubepolymercomposites9 andfibersof
wovennanotubes_°.Selectedmoduliof nanotuberopes
havebeencalculatedwithacontinuummodelbasedon
theintegratedaverageof thediscreteLennard-Jones
potential1_,MDsimulationusingtheTersoff-Brenner
potential_zandlatticedynamicmethods13'_4.

Forthepresentstudy,adirectsummationofatom-
pairpotentialsisdevelopedtoavoidanysimplifications
madetothenonlinearvanderWaalsinteractionsandto
permit optimum flexibility in representing
discontinuousor curvednanotubes.Additionally,a
directmethodpermitsirregularanddisruptednanotube
latticestobemodeledtosimulatedamage.Becausethe
fundamentalconstituentsof nanotubebundlesareonly
resolvableat nanometerlengthscales,analysesto
predictmacroscopicpropertiesmustnecessarilymerge
conceptsandtechniquesfrom continuumelasticity
theory and discretemolecularsimulation.The
methodologydevelopedhereincombinesa unitcell
continuummodelwithmolecularstaticcalculationsto
determineeffectivemoduliinalignedcarbonnanotube
bundles.

TheLennard-Jonespotentialisutilizedtosimulate
thevanderWaalsinteractionforcesamongcarbon
atom-pairsin alignedcarbonnanotubearrays.An
achiral"zig-zag"configurationis assumedfor the
carbonnanotubesandthetuberadiusisassumedsmall
suchthatthecross-sectioncanbeconsideredrigid.

Theobjectiveof this work is to formulatea
molecularmechanicsmodelto understandandpredict
theelasticpropertiesofcarbonnanotubebundles.This
methodutilizesa unitcell approachfor determining
selectedtransversemoduliof a hexagonalcrystalof
alignednanotubes.Thepredictedmoduliareshownto
exhibitthetransverseisotropyanticipatedforamaterial
possessinghexagonalsymmetry.Thepredictedmoduli
arecontrastedwithavailablepublisheddata.

Modified unit cell formulation

In elasticity analyses, the method of unit cells has

been developed to determine the effective properties of

Figure 2. Typical nanotube bundle j.

heterogeneous materials by identifying and analyzing

convenient domains of repeating microstructure.

Applied to the determination of effective continuum
elastic moduli of bundles of aligned carbon nanotubes,

a minimal repeating unit of nanotubes is defined and

subjected to continuous field deformation modes. An

assemblage of a primary unit cell of nanotubes with

surrounding image regions that are required in applying

periodic boundary conditions (pbc) is presented in

Figure 3. In this approach the nanotubes are regarded as

sources of potential energy that require interactions
with nanotubes outside the unit cell. Under periodic

boundary conditions, cells of nanotubes in the

transverse plane and nanotube segments in the axial
dimension are treated as images of the constituents

within the cell and used in the calculation of potential

energy. This permits interactions between atom-pairs
across the boundary to avoid introducing discontinuities

in the force field. In general, these conditions ensure

conservation of mass and energy, avoid surface or

boundary effects, and mathematically give the primary

unit cell a strict periodicity such that it can be
considered to represent an infinite ensemble of

molecules.

The basic approach of subjecting a molecular
ensemble to fundamental strain modes and recovering

effective moduli from energy measures has been used

in molecular dynamic simulations 15"16.By combining

concepts from continuum elasticity and molecular

dynamics, these representative units will be referred to
herein as 'pbc-unit cells'. Pbc-unit cells can be

constructed of arbitrary order but, with a proper

definition of the repeat geometry, the unit energy of the

primitive cell remains the same. Therefore the lowest
order cell is used for computations. A minimum-order

hexagonal pbc-unit cell is shown in Figure 4.
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The initial equilibriumconfigurationof the
hexagonalunitcell is determined by minimizing the

energy of the system as the nanotubes are moved

radially outward from a fixed center• This establishes

the equilibrium radius, &wand the nanotube center-to-

center separation distance, S, as shown in Figure 5.

A rigorous definition of the pbc-unit cell

dimensions is required to ensure invariance of the unit

energy with cell size. The required planar area of the

pbc-unit cell is given by

A, = M R (1)

where M is the number of nanotubes within the unit

cell. The effective depth of the pbc-unit cell is obtained

by first selecting a number of repeat units

(cicumferential rings of graphene), K_eg, and adding one
additional unit to account for image segments in the

axial dimension• The total area of the enclosed

graphene units is then equated to the surface area of a

perfect cylinder having the same radius as the nanotube.

This is expressed as

NAo(Ko_ +l)=2rtR,do,, (2)

where N is the number of graphene units around the

nanotube circumference, A_, is the area of an individual

graphene unit, and R,, is the nanotube radius• The
radius of an (N,0) nanotube can be derived as

R, =--V/-3 b Sec I2(14 - 1)1
(3)

where b is the carbon-carbon bond length. With the

area of a graphene unit given by A o =3.vt-3b-'/2,

Equation (2) yields the effective depth of the pbc-unit
cell as
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Figure 3. Pbc-unit cell showing outside periodic image nanotubes within the (2,3)-plane
and image sections of nanotubes in the (1,2)-plane.
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Figure 4. Miminal hexagonal pbc-unit cell Figure 5. Equilibrium radius definition

with surrounding image cells, for a hexagonal cell.
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d j, =--3 NbCos 1- K_,_ +1 (4)

Material constitutive relationship

The force field within a nanotube crystal consists

of a combination of strong linear bonding forces acting

within the nanotube and weak non-bonding forces

acting between adjacent nanotubes. This disparity

between the magnitude of interatomic forces leads to a

highly anisotropic constitutive relation. The hexagonal

symmetry of the nanotube crystal dictates a transversely

isotropic stress-strain relation given by

c_H =C, Eu +C,_, E,_2+C_,_ E33

(Y2,_= Ci2 Ell + C= E2,- + C23 E3_

_33 =C12 Ell -_- C23 E22 '1- C22 E33

__, =2C,_ El,-

¢Y_3= 2C44 E,_

_:3 =(C:: - C,,)_:,

(5)

Additional relationships between the material constants

are given in Reference 17 for a hexagonal system as

(6)

This material is uniquely defined by five independent

quantities where the '1' direction is directed along the
tube axis. The current effort will focus on the prediction

of normal and shear properties in the transverse plane.

Analysis methodology

The methodology used to determine selected

nanotube crystal properties involves defining an

appropriate pbc-unit ceil, applying selected strain

modes to the crystal, and computing the potential

energy due to atom-pair interactions as a function of the
deformation kinematics. Effective elastic constants are

then determined from the variation in the system

potential energy as

(7)

where Cij is the material stiffness, V is the pbc-unit cell
volume, • is the potential energy, and _k is an applied
strain mode.

Strain modes are applied to the nanotubes in the

crystal by the imposition of specific deformation fields.
The G23 shear modulus for a hexagonally packed

nanotube array is calculated using a pbc-unit cell

subjected to a pure shear strain mode as shown in

Figure 6. The magnitude of the shear strain is given by

twice the shear angle or Y,_3= 2 0. During a progressive
deformation with increasing 0, the potential energy is

computed by summing all atom-pair interactions
between adjacent nanotubes. The G23 shear modulus is
then obtained from the elastic strain energy, Op, using a

finite difference approximation as

G,_- 1 2 2@_ A_ (8)
- Vol aye, A,, d,, (A,y,,)"

where A_en is the planar area of the pbc-unit cell, deft is

the effective length of the nanotubes, A_ and A2 are first
and second order central difference operators,

respectively.
The bulk modulus is computed by applying a

dilatational strain as shown in Figure 7. Because the

strain in the axial dimension, el _, is assumed to be zero,

the dilation is defined as e = __,2+ E33 with

_22 =_ =E. The bulk modulus is obtained by

o.O..oooao.O.o
O'O 00 ©'0

00%O%9o0x, (3..0 0 .,,
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X2
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8s95
Figure 6. Imposed shear deformation on hexagonally packed nanotube array.
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applyingEquation(7)usingastraingivenby2_.The
calculationof the E22Young'smodulusand the
Poisson'sratio_o23isperformedbyapplying_;22strain
incrementsin the2-directionandrepositioningof the
tubesin the3-directionto minimizetheenergy.The
transverserepositioningof thetubesperpendicularto
theloadaxisdirectlygivesa measureof thePoisson
contraction/expansionyieldinge23.Thisisdepictedin
Figure8.

interactions.The Lennard-Jonesor '6-12' potential
energyfunctionisgivenby

(9)

whereg is thedepthof theenergywell,ctis thevan
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x., 0,0 0 0 0,0
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Figure 7. Imposed dilatational strain on hexagonally packed nanotube array.
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Figure 8. Calculation of Poisson's ratio.

The E2z modulus is obtained using Equation (7)

and the Poisson ratio is determined as _,_3 = -G3/E,-- , •

The C22 stiffness coefficient is obtained by applying the
same deformation mode defined in Figure 8, but no

energy minimization is performed to induce a
transverse Poisson deformation.

Potential energy calculations

The intertube forces are typically modeled by the

Lennard-Jones potential to represent van der Waals

der Waals radius, and rij is the separation distance-6
between the i th and jth atoms in a pair. The rij term

represents the attractive contribution to the van der
Waals forces between neutral molecules. It includes

permanent dipole-dipole interactions, the induction
effect of permanent dipoles, and instantaneous dipole

induced dipole interactions which are sometimes
referred to as the London dispersion forces. The other

component of the van der Waals interactions mimics

the repulsion between overlapping electron clouds and

is modeled by the r. -"- term which is short ranged Is'19.
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Results and discussion

In the present study, a crystal of single-walled

nanotubes is analyzed. Each nanotube has a diameter of
0.94 nm and an achiral zig-zag conformation with 12

graphene units around the circumference. The carbon-

carbon bond length is prescribed as 1.42 A. Nanotubes

of this size may be considered rigid in the transverse
direction tz13. Therefore, the only degree of freedom
included in the deformation kinematics is the relative

motion of the nanotube center, and the only

contribution to the potential energy changes with

imposed motion is computed using the Lennard-Jones

potential. The parameters used in the Lennard-Jones
potential are _ = 34.0 (K) and c_ = 0.3406 nm 13.20. A

comparison between predicted elastic moduli using the
current direct method and results obtained using

alternate approaches is presented in Table 1. From the
limited published results it is clear that there is a wide
variation in predicted elastic moduli for nanotube
bundles.

19,,. Substituting the calculated values for the Young's

modulus E2,_ and Poisson's ratiot)23 into the resulting

expression, the transverse normal stiffness is obtained

as

E,, __ 60.3 - 68.2 GPa (11)
C2-' - 1 - _9'-.'3 1 - 0.34"-

which closely agrees with the independently calculated

value of C22. Next, computing C23 as 1923C,_2 = 23.2

GPa and applying the relations given by Equations (6),
it is found that the transverse plane stiffnesses are

recoverable from the computed shear and bulk moduli

as

Cz2 = K23 + Gz3 = 45.8 + 22.5 = 68.3 GPa
(13)

C23 = K23 - G23 = 45.8 - 22.5 = 23.3 GPa

Thus, the computed elastic constants are completely
self-consistent for a transversely isotropic material as

required. The values reported in Reference 13 (Table 1)

Table 1. Comparison of predicted elastic constants.

Elastic Constant

Bulk Modulus K23 (GPa)

Direct Method

45.8

Reference 13"

42.0

5.3"

Reference 14""

18.0

Reference 12

33.6

Shear Modulus G23 (GPa) 22.5 ....

Young's Modulus E22 (GPa) 60.3 17.0 ....
Normal Stiffness C22 (GPa) 68.3 42.0 78.0 --

0.34 0.75 ....
Poisson Ratio l)23

* Value derived using relationship in Equation (6).

'* Results generated using (7,7) helical nanotubes with diameter = 0.94 nm.

All the results listed in Table 1 for the present

analysis were computed independently, none were
derived from a subset of other values. For a 3-D solid

exhibiting hexagonal symmetry, the expression for the
transverse Young's modulus, E22, is given by 13

.+C3,)C.-2C],]
(c. c,, -c:3)

(10)

Because the axial modulus of the nanotubes in the

crystal is generally two orders of magnitude greater
than the transverse moduli, we may take

C,, >> C..C3_..C.. Using the relationship

C23 =_23 C2z and equating Poisson ratios under

transverse plane isotropy as agz3=193._. Equation (10)

reduces to a simple relationship between C22. E22 and

are also self-consistent for transverse isotropy and

compare favorably with the present analysis for the

prediction of the bulk modulus, K23. In contrast, an
analytical result presented in Reference 12 (Table 1) is
slightly lower. The calculation of the normal stiffness,
Cz2, which is obtained from applying a similar
deformation as that used to compute the bulk modulus

(applying only E22 instead of both E22 and E33 with E22 ----

e33), is distinctly different from Reference 13. The

present analysis yields a stiffness closer to that of
Reference 14 (Table 1) in which nanotubes of the same
radius were used but with different helicity. The effect

of helicity is discussed in Reference 13 in which it is
shown for several cases that the configuration of

graphene units on the nanotube surface has a negligible

effect for small radius tubes ( R < 16 _ ). Furthermore,

from results presented in Reference 13, C23 may be
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calculatedasC23= ag_C22 = 31.5 GPa. If one applies

the first of the relations given in Equations (6), one

obtains a value for G23 of 5.3 GPa. This shear modulus

is comparable to the shear modulus associated with

parallel planes in graphite which is experimentally
measured as 4.0 GPa 21'22 and indicates a significant

discrepancy between predictions using the present
method and the lattice dynamics approach used in
Reference 13. In the direct summation and lattice

dynamic methods, the physics of cohesion are
identically represented by the same parameterization of

the Lennard-Jones potential. Possible differences in

predictions using lattice dynamics may be due to the
inherent integral averaging of force constants used in
the lattice dynamical matrix and the a priori selection of

interacting nearest-neighbor atoms used in defining the
primitive lattice cell, both of which are avoided in the
direct method.

A potential source of inaccuracy effecting all methods
is the form of the Lennard-Jones potential function

itself. The Lennard-Jones potential was originally

developed for noble gases and is known to produce
poor results in other applications including graphite. It

gives good results for the C33 modulus (interplanar
separation), but the C44 parallel plane shear modulus is
underpredicted by an order of magnitude 22. Alternative

potentials have been proposed 23 that account for the
delocalized electronic configuration of graphite and

yield accurate predictions for both the transverse
normal and shear moduli. Additional study is warranted

to assess'the spatial interactions of delocalized bonds in
carbon nanotubes that may be underestimated using a

spherical Lennard-Jones model.

Conclusions

A consistent method has been formulated for and

applied to computing effective transverse mechanical

properties of nanotube crystals. The method is based on
specifying a unit cell configuration with periodic

boundary conditions, applying a deformation field

associated with a particular strain mode, and utilizing a
direct summation procedure to compute changes in

potential energy from which an effective elastic
modulus may be obtained. The disparity between

reported predictions of mechanical properties that

depend exclusively on van der Waals cohesion and the

paucity of available experimental data suggest that
much additional investigation is warranted in this area.

The development of a more realistic representation of

van der Waals interactions between nanotube surfaces

may be required to correlate analytical predictions with
future experimental measurements of nanotube crystal

properties.
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